Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics
نویسنده
چکیده
Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.
منابع مشابه
Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN
BACKGROUND Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and an...
متن کاملBioinformatics analysis and expression of a truncated form of Proteus mirabilis Pta protein as a novel vaccine target against urinary tract infection
Introduction: Pathogenic strains of Proteus mirabilis have important roles in urinary tract infection. Proteus toxic agglutinin (Pta) is amongst the most important virulence factors of P. mirabilis. This protein has a conserved sequence present in all the strains which could be evaluated as a novel vaccine target against them. The aims of the current study were the expression, purification and ...
متن کاملCloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen
Objective(s):Brucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. GroEL antigen increases Brucella survival and is one of the major antigens that stimulates the immune system. Hence, the objective of the present study was cloning and bioinformatics analysis of GroEL gene. Materials and Methods: The full-length open reading frame of this gene was...
متن کاملMolecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans.
Brucellosis caused by Brucella spp. is a major zoonotic disease. Control of brucellosis in agricultural animals is a prerequisite for the prevention of this disease in human beings. Recently, Brucella melitensis was declared by the Centers for Disease Control and Prevention to be one of three major bioterrorist agents due to the expense required for the treatment of human brucellosis patients. ...
متن کاملGenome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity
The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete geno...
متن کامل